User and IoT-Oriented Network Traffic Monitoring

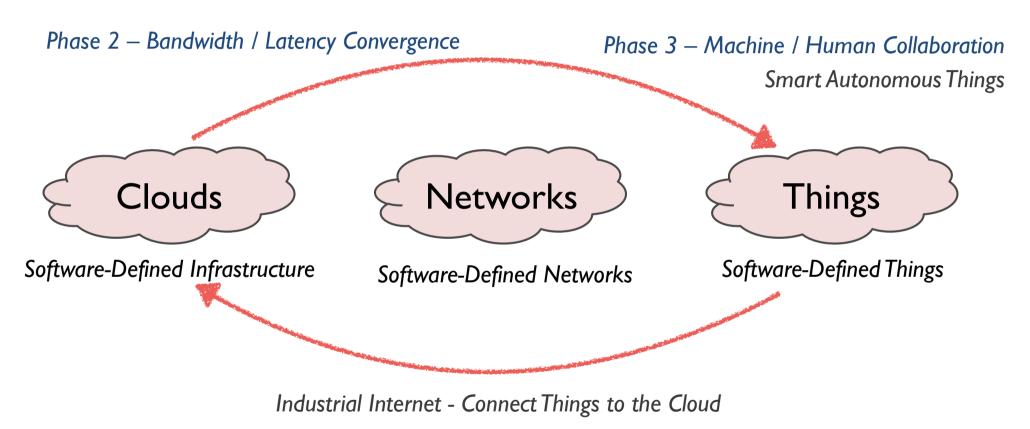
Luca Deri <deri@ntop.org> @lucaderi

About Me


- Lecturer at the University of Pisa, CS Department, research grant from CNR Pisa, Italy.
- Founder of the ntop project that develops open source network traffic monitoring applications.
- ntop (circa 1998) is the first app we released and it is a web-based network monitoring application.
- Today our products range from traffic monitoring, high-speed packet processing, deep-packet inspection (DPI), IDS/IPS acceleration, and DDoS Mitigation.
- See http://github.com/ntop/ 💆

It all Started with a 5\$ Computer...

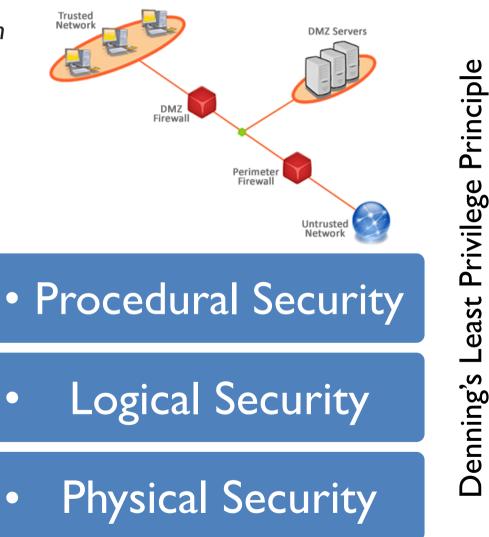
- Building low-cost devices able to run full fledged OSs (e.g. Linux) enabled computing to become really pervasive.
- No more excuses for not automating tasks, or rethinking existing processes in a more intelligent fashion.



- I Ghz, Single-core CPU
- 512MB RAM
- Mini HDMI and USB On-The-Go ports
- Micro USB power
- HAT-compatible 40-pin header
- Composite video and reset headers

```
Raspberry PI zero (US$ 5)
Pine64 PADI IoT (US$ 1.99)
```


IoT Transformation


Phase I - OT/IT Convergence

A Broken Security Model [1/3]

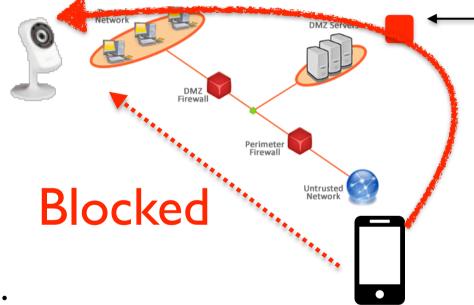
"Every program and every privileged user of the system should operate using the least amount of privilege necessary to complete the job."

Jerome Saltzer

A Broken Security Model [2/3]

- Low-voltage Environment:
 - Wide-spread use of IoT devices.
 - Increasing interconnection between edge devices and corporate networks:

- an edge device has important topological privileges.
- Edge devices lack built-in security features: too simple, yes easy to attack or replace with "trojan" devices.
- Physical location renders networks vulnerable
 to external attack even without Internet connection

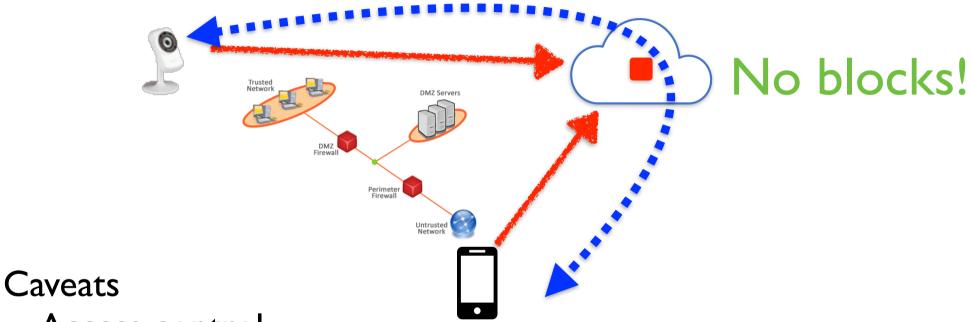

A Broken Security Model [3/3]

- Unsecured low-voltage devices:
 - Access control
 - Unauthorised opening of gates/doors, false attendance information.
 - Video surveillance cameras
 - Manipulation of video camera streams, unauthorised viewing or disabling video edge-device elements.
 - Building-management/Fire-alarm systems
 - False readings, disabling or blinding.
 - Perimeter IP-based sensors
 - False readings, disabling or blinding.
 - DDoS (Distributed Denial of Service) attacks, can disrupt network operations and thus break a complex system/factory.

Cloud: Easy vs Safe [1/3]

• When the Internet was created, the distinction between private and local network was clear

This is where the camera was supposed to be *ideally* located:

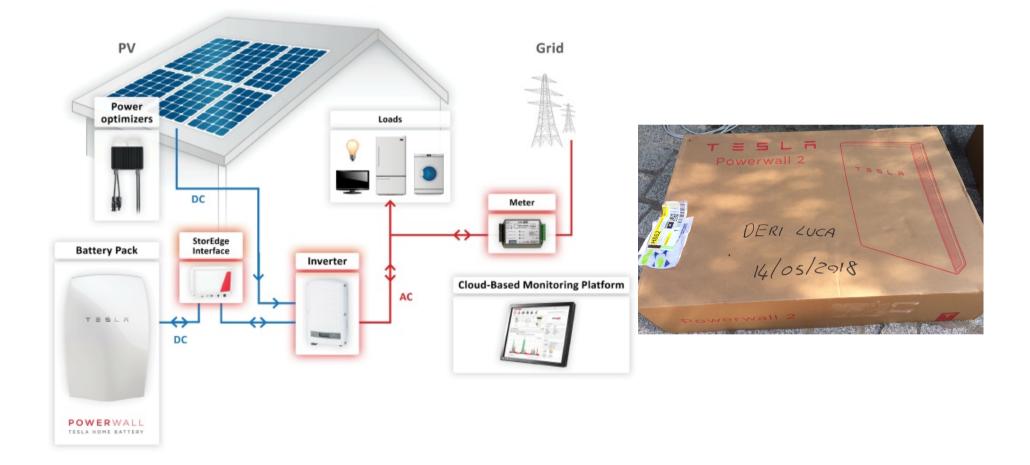

- Open a fixed TCP port
- Use it as a pivot to reach the Internal network

But:

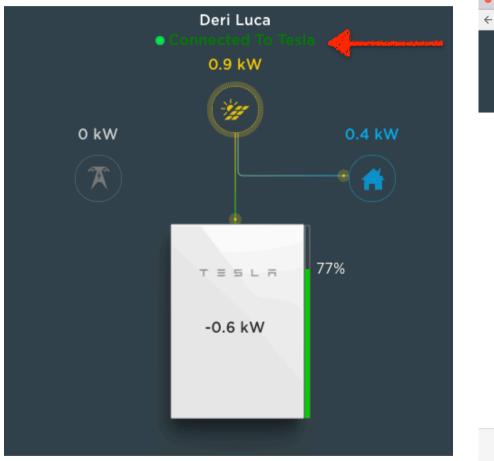
- Most home networks have no DMZ nor static IP
- People do not like to configure anything, just unbox the camera and plug it to electricity

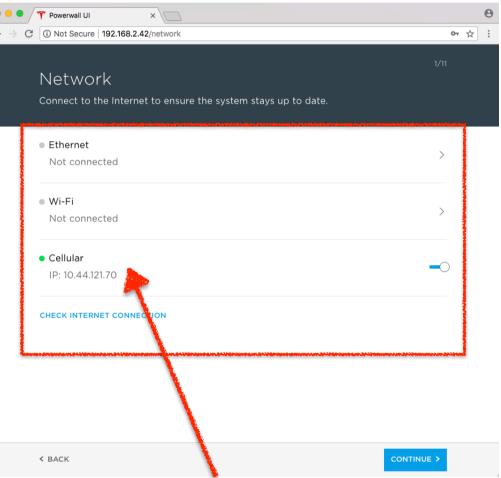
Cloud: Easy vs Safe [2/3]

- Access control is managed by the device manufacturer.
- The camera can become a trojan horse if not properly protected.



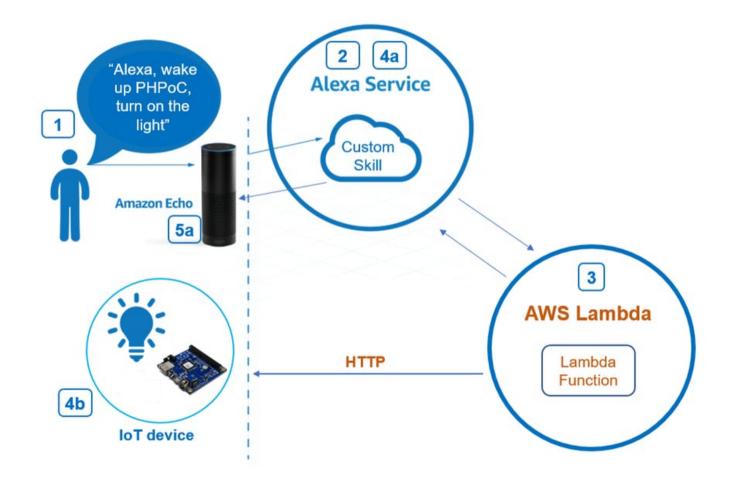
Cloud: Easy vs Safe [3/3]




IoT Devices in Cloud [1/5]

IoT Devices in Cloud [2/5]

NOTE Cellular bypasses my home network security devices.



IoT Devices in Cloud [3/5]

13

IoT Devices in Cloud [4/5]

IoT Devices in Cloud [5/5]

In essence

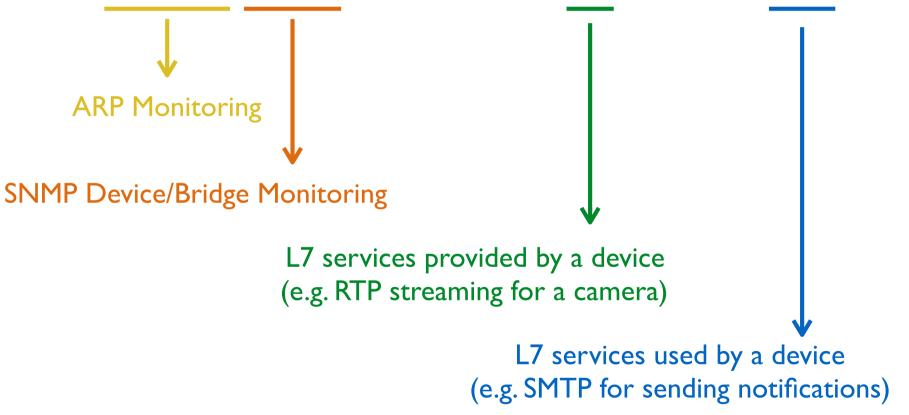
- Direct device communications are no longer the standard communication paradigm. Example:
 - Before: Computer A talks with Printer B
 - Today: Computer A talks with Google Cloud Print, then Google Cloud Print talks with Printer B.

- Communications are encrypted over proprietary protocols (bye bye RFCs).
- Security is delegated to the cloud provider that decides who's talking to who based on customer preferences.

Traditional Network Monitoring Is Becoming Outdated...

- Popular metrics such as bytes, packets, best-match routing are being revisited since users care about latency and application service time.
- Polling-based protocols (e.g. SNMP) are being replaced by push-oriented approaches (e.g. Cisco Telemetry).
- Binary/custom protocols (e.g. NetFlow/IPFIX) are being replaced by (less efficient yet more open) JSON-based data sources so that data can be shared across components.

Basically We Need to Monitor...


- Dynamic network topologies and moving components.
- Identify IoT devices and threat them differently from "generic" computers (e.g. laptops or tablets)
- Tag network traffic with application protocol and monitor it continuously overtime looking at specialised metrics (e.g. HTTP return code) in addition to generic ones (e.g. jitter and bandwidth).
- As IoT devices are not installed in "controlled environments" (e.g. a rack on a datacenter vs on a corridor) physical security needs also to be monitored.

IoT Monitoring: Device Profile

• A device profile is a pair

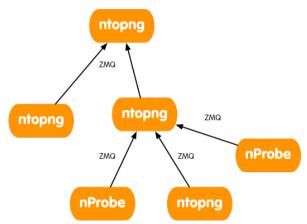
< < Mac, IP, Port >, < Service IN, Service OUT > >

IoT Monitoring: Traffic Profile

- A traffic profile is a pair
 < Oevice, Service, Latency, < Thpt UP, Thpt DOWN >,
 Protocol Metadata > >
- Device: subject of the communication.
- Service: Layer 7 (DPI) protocol identification.
- Latency: service time (slow response is a problem for devices such as burglar alarms).
- Throughput: create baseline (e.g. low throughput for a camera is an indication of a problem/attack).
- Metadata: used to pinpoint a problem.

Monitoring IoT (Security) [1/2]

- Learning
 - Identify network elements (discovery), assign them a role (e.g. a printer).
- Profiling
 - Bind a device to a profile (e.g. a printer cannot Skype or share files using BitTorrent) and enforce it via alarms or traffic policy enforcement.
- Continuous Monitoring
 - Physical constraints (e.g. MAC/IP binding and switch port location), traffic constraints (e.g. a new protocol serviced by a device or throughput above/under its historical baseline can be an indication of a problem).


Monitoring IoT (Security) [2/2]

- In IoT monitoring traffic patters are rather static and thus once a model is created it must be observed regularly overtime, if not alert.
- Triggers notifications if devices fail due to electrical, software, mechanical or other faults: active monitoring/polling is compulsory.
- Threats
 - External: monitor/detect breaches in the low-voltage network
 - Internal: monitor/detect network threats through unauthorised use (e.g. HTTP access to a device from a client that never did that before).

Solution Overview [1/3]

 Software-only, low-cost sensors that can be embedded in devices or deployed at the network edge, to create a collaborative monitoring infrastructure.

https://github.com/ntop/ntopng

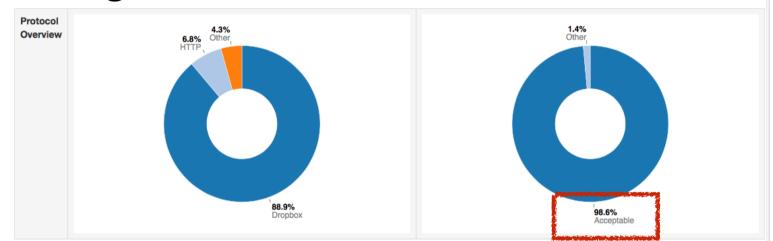
• Tag devices, traffic, and users.

What do we need to hide here?

Ingress but no egress traffic: service scan?

Solution Overview [2/3]

All Layer 2 Devices


ARP Stats

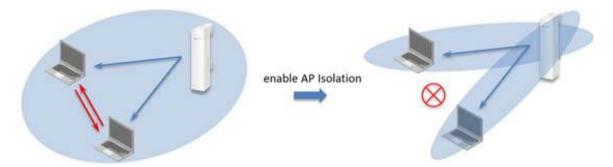
			Jahar San Santan				10 - Filte	er MACs- Mar	ufacturer -		
MAC Address	Manufacturer		Hosts	ARP Sent❤	ARP Received	Seen Since	Breakdown	Throughput	Traffic		
80:2A:A8:8D:69:2C	Ubiquiti Networks Inc.		269	38	8	4 min, 32 sec	Sent Ro	9.1 Kbit	4.36 MB		
C4:2C:03:06:49:FE 厳	Apple, Inc.			10	8	4 min, 32 sec	Se Rovd	8.75 Kbit	4.37 MB		
CC:2D:8C:F6:C7:39	LG ELECTRONICS INC			5	2	4 min, 30 sec	Sent F	95.88 bps	14.62 KB		
54:4E:90:BA:EC:84 🗯	Apple, Inc.	2	5	0	2 min, 16 sec	Sent	361.17 bps	10.22 KB			
AC:87:A3:16:3E:30 厳	Apple, Inc.	1	0	0	4 min, 6 sec	Sent	0 bps	2.61 KB			
80:2A:A8:8D:2B:EE	Ubiquiti Networks Inc.	1	0	0	3 min, 30 sec	Sent	0 bps	228 B			
26:A4:3C:FF:4C:D7	n/a		0	0	0	2 min, 24 sec	Sent	0 bps	468 B		
28:57:BE:E3:D7:CF	Hangzhou Hikvision Digital Technology		1	0	0	4 min, 31 sec	Sent	0 bps	13.6 KB		
24:A4:3C:FE:4C:D7	Ubiquiti Networks Inc.	1	0	0	2 min, 22 sec	Sent	0 bps	1.45 KB			
Showing 1 to 9 of 9 rows	Hosts Monito	ring						Physic	al Loo	atic	
Mac. 00.2A.A0.0D.09.20							Devic	e Port			
Address	80:2A:A8:8D:6	now Hosts]	80:2A:A8:8D:69:2C	+ s	ave		600	0/1/0			
rst / Last Seen 02/04/2017 19:28:54 [4 min, 35 sec ago]			C	02/04/2017 19:33:26	[3 sec ago]		600 ge-0/1/0 trunk				
t vs Received Traffic Breakdown			Sent			Rcvd		324	ge-0/1/0	trur	
ffic Sent / Received 5,111 Pkts / 3.71 MB		71 MB	4,558 Pkts / 666.24 KB								
ress Resolution Protocol	ARP Requests		ARP Replies	•				572 g	ge-0/0/3		
	38 Sent / 0 Re	Sent / 0 Received 0 Sent / 8 Received									

Solution Overview [3/3]

• Baselining

Alerting

Interface: eth0	*	Packets	Protocols		<u>_</u>	▲	ľ	٥		SNMP	÷
General Settings	O E	Every Minute	Contract Street Street	5 Minute	es	Hourly	,	Daily			
Interface Alerts Interface eth0											
Rearm minutes		1 The rearm is t	the dead time be		ne alert ç	generation	and th	e potential	generati	on of the nex	t alert of the same kind.


Next Step: Mitigation and Prevention

- Monitoring is nice to have. However it cannot be used to block threats, just to spot them.
- New efforts such as Manufacturing Usage Description (MUD) will help in the future but they are just a hint from the manufactured, thus untrusted.
- What to do in the meantime?
 - Prevent devices <u>at the edge</u> from doing unwanted communications.
 - Limit and cleanup east-west traffic.
 - What about mobility? Are cloud services the right answer?

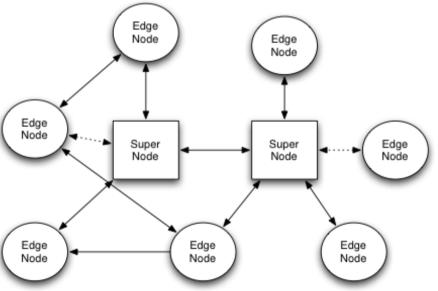
Jailing Devices with Overlays and DPI [1/4]

• Jail devices and prevent them from doing unwanted traffic (i.e. micro segmentation).

- Easy to do in wireless, but not on wired.
- How to implement layer-7 device microsegmentation on wired and non-local devices?

Jailing Devices with Overlays and DPI [2/4]

- Lisa is sick: she needs to keep connected her health care device from the home network with the hospital.
- John manages a fleet of trucks for food delivery. Lisa is John's secretary: from home she carries on her work.


- Some Challenges:
 - Lisa home devices should not be mixed with John devices.
 - A security flaw should not affect both networks.
 - How to contact mobile devices with a non persistent IP address ?

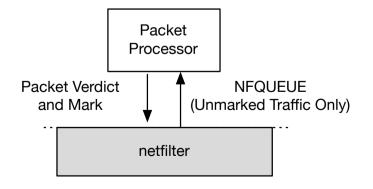
Ö

Jailing Devices with Overlays and DPI [3/4]

 <u>https://github.com/ntop/n2n</u> (Linux, Windows, MacOS, Android) implements a peer-to-peer overlay for interconnecting devices on a secure fashion.

Jailing Devices with Overlays and DPI [4/4]

 <u>https://github.com/ntop/ndpi</u> is a GPL DPI toolkit in order to build an open DPI layer able to dissect ~240 protocols.


- · Idea:
 - Use nDPI in the n2n edge to allow only permitted communication protocols. Enable routing across overlays only for the permitted flows.
 - The n2n supernode enforces communications policies across edge peers and implements device isolation, either local/remote wired/wireless.

Putting Pieces Together [1/2]

- Low cost Linux-based routers have an embedded switch that could be used to analyse the traffic across ports (software bridge).
- Leveraging on nDPI and iptables it is possible to analyse only the first we connection packets to enforce verdicts (> 300 Mbit on EdgeRouterX).

Putting Pieces Together [2/2]

- IoT devices that can run n2n natively will be protected by the local edge component that will enable connectivity in compliance with the network policy.
- "Closed" IoT devices are policed by nDPI-powered switches that will permit only selected communication flows.
- In summary n2n+nDPI implement persistent and secure network overlays using open source software on Linux-powered low-cost hardware.

Final Remarks

- IoT and cloud computing create new monitoring challenges and require an *integrated monitoring* approach: element + periodic active scans + permanent passive traffic monitoring.
- Monitoring hundred/thousand devices require scalability and intelligence in the monitoring platform (analytics and big data is not enough, platform must be reactive, distributed, multi-tenant).
- Combining network overlays with DPI it is possible to enforce traffic policies and implement a persistent and micro-segmented layer for IoT and cloud communications.

